$\definecolor{saphire}{RGB}{0, 50, 95}$
$\definecolor{crimson}{RGB}{193, 0, 67}$
$\definecolor{capri}{RGB}{0, 196, 223}$
$\definecolor{amber}{RGB}{244, 170, 0}$
$\definecolor{plum}{RGB}{129, 2, 98}$
$\definecolor{cerulean}{RGB}{0, 145, 181}$
$\definecolor{ruby}{RGB}{212, 0, 114}$
$\definecolor{cardinal}{RGB}{172, 0, 64}$
$\definecolor{cinnamon}{RGB}{205, 90, 19}$
$\definecolor{limegreen}{RGB}{41, 188, 41}$
$\definecolor{gold}{RGB}{141, 116, 74}$
$\definecolor{taupe}{RGB}{110, 80, 72}$
$\definecolor{teal}{RGB}{69, 126, 129}$
$\definecolor{forestgreen}{RGB}{0, 70, 49}$
$\definecolor{mahogany}{RGB}{106, 51, 40}$
$\definecolor{silver}{RGB}{194, 211, 223}$
$\definecolor{oldrose}{RGB}{184, 133, 141}$
$\definecolor{curry}{RGB}{156, 154, 0}$
$\definecolor{cobalt}{RGB}{0, 80, 114}$
$\definecolor{rubydarker}{RGB}{197, 0, 99}$
$\definecolor{purple}{RGB}{56, 6, 92}$
$\definecolor{cardinaldarker}{RGB}{97, 0, 36}$
$\definecolor{ceruleandarker}{RGB}{0, 113, 140}$
$\definecolor{amberlighter}{RGB}{240, 191, 79}$
$\definecolor{amberbrighter}{RGB}{245, 242, 88}$
$\definecolor{onyx}{RGB}{15, 15, 15}$
Example:
Example:
\[\begin{align*}
\realNum &\to \complexNum \qquad;\qquad
\del\cdot\del = \laplace \\
\tens{Q} &= \frac{3S}{2} \left[ \vec{n} \ \vec{n} - \tens{\delta} / 3 \right] \\
\kbt &= {\color{saphire}\text{thermal energy}} \\
{\color{capri} \av{y} } &= {\color{ruby} \abs{x}^3 }\\
\eqnote{ \pd{ P\left(x,t;x_0,t_0\right) }{t} }{rate of change} &= \eqnote{ -\pd{ \left[ \left\{ f(x,t) + \alpha g \frac{\partial g}{\partial x} \right\} P(x,t;x_0,t_0)\right] }{x} }{driven term} + \eqnote{ \frac{1}{2} \pd{}{xx} \left[g^2(x,y)P(x,t;x_0,t_0)\right] }{diffusive term},
\end{align*}\]
You can make your own macros for mathJax (LaTeX-like).
At the end of the html is a script for initializing reveal, inside of which is math, inside of which is TeX, inside of which is Macros. There you can define your own.
Code:
Liquid crystals can support multiple broken symme-tries, such as broken orientational symmetry, as in rod-like nematic; chirality, as in cholesteric phases; or a lim-ited degree of positional ordering. For instance, smec-tic liquid crystals possess lamellar structure — stackingalong one direction while maintaining liquid-like posi-tional disorder within layers. This partial positional or-dering makes lamellar fluids excellent material systemsfor exploring topology [1–4], dislocations [5, 6], disclina-tions and geometric memory [7], especially in confininggeometries [8–10], shells [11–14] or in contact with mi-cropatterned structures [15]. Furthermore, their abilityto spontaneously assemble long-range order makes themideal as lithographic templates [16–19].